Acetylcholine and norepinephrine mediate GABAergic but not glycinergic transmission enhancement by melittin in adult rat substantia gelatinosa neurons.
نویسندگان
چکیده
GABAergic and glycinergic inhibitory synaptic transmissions in substantia gelatinosa (SG; lamina II of Rexed) neurons of the spinal dorsal horn play an important role in regulating nociceptive transmission from the periphery. It has not yet been well known whether each of the inhibitory transmissions plays a distinct role in the regulation. We report an involvement of neurotransmitters in GABAergic but not glycinergic transmission enhancement produced by the PLA(2) activator melittin, where the whole-cell patch-clamp technique is applied to the SG neurons of adult rat spinal cord slices. Glycinergic but not GABAergic spontaneous inhibitory postsynaptic current (sIPSC) was increased in frequency and amplitude by melittin in the presence of nicotinic, muscarinic acetylcholine, and α(1)-adrenergic receptor antagonists (mecamylamine, atropine, and WB-4101, respectively). GABAergic transmission enhancement produced by melittin was unaffected by the 5-hydroxytryptamine 3 receptor and P2X receptor antagonists (ICS-205,930 and pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid, respectively). Nicotinic and muscarinic acetylcholine receptor agonists [(-)-nicotine and carbamoylcholine, respectively] and norepinephrine, as well as melittin, increased GABAergic sIPSC frequency and amplitude. A repeated application of (-)-nicotine, carbamoylcholine, and norepinephrine, but not melittin, at an interval of 30 min produced a similar transmission enhancement. These results indicate that melittin produces the release of acetylcholine and norepinephrine, which activate (nicotinic and muscarinic) acetylcholine and α(1)-adrenergic receptors, respectively, resulting in GABAergic but not glycinergic transmission enhancement in SG neurons. The desensitization of a system leading to the acetylcholine and norepinephrine release is slow in recovery. This distinction in modulation between GABAergic and glycinergic transmissions may play a role in regulating nociceptive transmission.
منابع مشابه
Glycinergic Transmission Enhancement by Melittin in Adult Rat
Acetylcholine and Norepinephrine Mediate GABAergic but not 1 Glycinergic Transmission Enhancement by Melittin in Adult Rat 2 Substantia Gelatinosa Neurons 3 4 Tao Liu, Tsugumi Fujita, and Eiichi Kumamoto 5 6 Department of Physiology, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, 7 Japan; Department of Pediatrics, Medical College of Nanchang University, Nanchang 8 330006, China 9 10 Runni...
متن کاملPhospholipase A2 activation enhances inhibitory synaptic transmission in rat substantia gelatinosa neurons.
Phospholipase A(2) (PLA(2)) activation enhances glutamatergic excitatory synaptic transmission in substantia gelatinosa (SG) neurons, which play a pivotal role in regulating nociceptive transmission in the spinal cord. By using melittin as a tool to activate PLA(2), we examined the effect of PLA(2) activation on spontaneous inhibitory postsynaptic currents (sIPSCs) recorded at 0 mV in SG neuron...
متن کاملDevelopmental change and sexual difference in synaptic modulation produced by oxytocin in rat substantia gelatinosa neurons
We have previously reported that oxytocin produces an inward current at a holding potential of -70 mV without a change in glutamatergic excitatory transmission in adult male rat spinal lamina II (substantia gelatinosa; SG) neurons that play a pivotal role in regulating nociceptive transmission. Oxytocin also enhanced GABAergic and glycinergic spontaneous inhibitory transmissions in a manner sen...
متن کاملAdenosine inhibits GABAergic and glycinergic transmission in adult rat substantia gelatinosa neurons.
The effect of adenosine on inhibitory postsynaptic currents (IPSCs) was examined in substantia gelatinosa (SG) neurons of adult rat spinal cord slices by using the whole cell patch-clamp technique. Adenosine reversibly reduced the amplitude of GABAergic and glycinergic electrically evoked IPSCs (eIPSCs) in a dose-dependent manner (EC50 = 14.5 and 19.1 microM, respectively). The A1 adenosine-rec...
متن کاملAnandamide Depresses Glycinergic and GABAergic Inhibitory Transmissions in Adult Rat Substantia Gelatinosa Neurons
Cannabinoid CB1 receptors have been found in the superficial dorsal horn of the spinal cord, particularly the substantia gelatinosa (SG), which is thought to play a pivotal role in modulating nociceptive transmission. Although cannabinoids are known to inhibit excitatory transmission in SG neurons, their effects on inhibitory transmission have not yet been examined fully. In order to know furth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 106 1 شماره
صفحات -
تاریخ انتشار 2011